Prime Calc

Prime Calc

Aeiou
Aug 20, 2015
  • 10.0

    1 جائزے

  • 1.7 MB

    فائل سائز

  • Android 2.1+

    Android OS

About Prime Calc

Powerful scientific calculator, fuctions, matrices, integrals and derivatives

PrimeCalc - free scientific symbolic calculator

- 70 functions, 20 mathematical constants and up to six variables

- New functions and constants can be defined by the user

- Supports complex numbers

- Matrices, vectors, sets and calculations on them

- Solves the mathematical equations

- Calculate the integrals and derivatives

- Step-by-step calculations

- And many more

Supported functions, operators, and mathematical constants:

Arithmetic:

Operators +, -, ×, ÷, %

x^n - nth power of x

√(x) - Square root of x

√(n, x) - nth root of x

ln(x) - Natural logarithm of x

log(x) - Logarithm of x to base 10

log(n, x) - Logarithm of x to base n

∑(f(x), imin, imax) - Summation of f(x) from imin to imax

∏(f(x), imin, imax) - Product of f(x) from imin to imax

Mathematical analysis:

∫(f(x)) - Indefinite integral of f(x)

∫(f(x), xmin, xmax) - Definite integral of f(x) from xmin to xmax

∂(f(x)) - Derivative of f(x)

lim(f(x), c) - Limit of f(x) when x approaches c

Equation solving:

Representation of polynomial - x^2+3x-2=0

= - Polynomial equation operator

Numerical Functions:

m mod n - Remainder of m ÷ n

gcd(m, n) - Greatest common divisor of m and n

lcm(m, n) - Least common multiple of m and n

abs(n) - Absolute value of n

round(n) - Integer closest to n

frac(n) - Fractional part of n

floor(n) - Floor value of n

ceil(n) - Ceiling value of n

Complex numbers:

Representation - 5+2i

re(c) - Real part of complex number c

im(c) - Imaginary part of complex number c

Statistics:

median([a]) - Median of [a]

gmean([a]) - Geometric mean of [a]

amean([a]) - Arithmetic mean of [a]

randi(n) - Random integer from 0 to n

randr - Random real from 0 to 1

Number theory:

harmonicN(n) - nth harmonic number

Combinatorics:

n! - Factorial of n

binomial(n, k) - Binomial coefficient

multinomial(n1, n2, ...) - Multinomial coefficient

catalanN(n) - nth Catalan number

fibonacci(n) - nth Fibonacci number

Trigonometric functions:

sin(x), cos(x), tan(x)

sec(x), csc(x), cot(x)

asin(x), acos(x), atan(x), acot(x)

Hyperbolic functions:

sinh(x), cosh(x), tanh(x)

arsinh(x), arcosh(x), artanh(x)

Matrixes:

Representation - [[1,2],[3,4]]

[m1]⋅[m2] - Product of [m1] and [m2]

tran([m]) - Transpose [m]

ctran([m]) - Conjugate and transpose [m]

inverse([m]) - Invert [m]

det([m]) - Determinant of [m]

tr([m]) - Trace of [m]

mpow([m], n) - nth matrix power of [m]

Number sets:

Representation - [1,2]

union([a1], [a2]) - Union of two sets

intersec([a1], [a2]) - Intersection of two sets

max([a]) - Largest element of [a]

min([a]) - Smallest element of [a]

Constants:

π - Number Pi

e - Euler's number

i - Imaginary unit

∞ - Infinity

γ - Euler–Mascheroni constant

G - Catalan's constant

A - Glaisher–Kinkelin constant

φ - Golden ratio

κ - Khinchin's constant

C₂ - Twin prime constant

ζ₃ - Apéry's constant

B₄ - Brun's constant for prime quadruplets

B₂ - Brun's constant for twin primes

EB - Erdős–Borwein constant

δ - Feigenbaum first constant

α - Feigenbaum second constants

BL - Legendre's constant

M₁ - Meissel–Mertens constant

مزید دکھائیں

What's new in the latest 0.6

Last updated on 2015-08-20
Memory support (M+ and M buttons)
History support ("History" from main menu)
Minor fixes
مزید دکھائیں

ویڈیوز اور اسکرین شاٹس

  • Prime Calc پوسٹر
  • Prime Calc اسکرین شاٹ 1
  • Prime Calc اسکرین شاٹ 2
  • Prime Calc اسکرین شاٹ 3
  • Prime Calc اسکرین شاٹ 4
  • Prime Calc اسکرین شاٹ 5
  • Prime Calc اسکرین شاٹ 6
  • Prime Calc اسکرین شاٹ 7

کے پرانے ورژن Prime Calc

APKPure آئیکن

APKPure ایپکےذریعےانتہائی تیزاورمحفوظڈاؤنلوڈنگ

Android پر XAPK/APK فائلیںانسٹالکرنےکےلیےایککلککریں!

ڈاؤن لوڈ کریں APKPure
thank icon
ہم آپ کے صارف کے تجربے کو بہتر بنانے کے لیے اس ویب سائٹ پر کوکیز اور دیگر ٹیکنالوجیز کا استعمال کرتے ہیں۔
اس صفحے پر کسی بھی لنک پر کلک کرکے آپ ہماری رازداری کی پالیسی اور کوکیز پالیسی پر متفق ہو رہے ہیں۔
مزید جانیں