Matrix Calculator

Matrix Calculator

Codify Apps
Dec 28, 2024
  • 22.2 MB

    Tamanho do arquivo

  • Android 5.0+

    Android OS

Sobre este Matrix Calculator

O aplicativo Matrix Solver ajuda você a resolver operações matriciais

Soluções de álgebra matricial servem para você resolver equações matriciais rapidamente. Experimente esta calculadora e solucionador de matriz para aproveitar a melhor experiência da Calculadora de Matriz com Solução.

Matrix Solver contém as seguintes ferramentas:

Calculadora Matriz

Calculadora de adição de matrizes

Calculadora de subtração de matriz

Calculadora de multiplicação de matrizes

Calculadora de Determinante de Matriz

Calculadora de transposição de matriz

Calculadora Matriz Inversa

Calculadora de classificação de matriz

Calculadora de potência matricial

Calculadora de eliminação Gauss Jordan

Calculadora de vetores próprios

Calculadora de autovalores

Calculadora de nulidade matricial

Calculadora Matriz

Calculadora de operações matriciais

Solucionador de matrizes

Calculadora matemática matricial

Calculadora de Matriz Online

Calculadora de adição de matrizes

Calculadora de subtração de matriz

Calculadora de multiplicação de matrizes

Calculadora de divisão de matriz

Calculadora Determinante

Calculadora de autovalor

Calculadora de autovetor

Calculadora de Matriz Inversa

Calculadora de redução de linha de matriz

Calculadora de transposição de matriz

Calculadora de classificação de matriz

Calculadora de potência matricial

Calculadora Exponencial Matriz

Calculadora de rastreamento de matriz

Calculadora de norma matricial

Solucionador de equações matriciais

Aplicativo Calculadora Matriz

Calculadora Matriz 2x2

Calculadora Matriz 3x3

Calculadora Matriz 4x4

Calculadora de rastreamento de matriz

Calculadora de decomposição LU

Multiplicação de matriz por calculadora

Calculadora de formulário reduzido de linha

Calculadora Adjunta de Matriz

Perguntas frequentes sobre o solucionador de matrizes

1. O que é uma matriz?

Resposta: Uma matriz é um arranjo bidimensional de números, símbolos ou expressões organizados em linhas e colunas. É frequentemente usado em vários campos da matemática, ciências e engenharia para representar e manipular dados e resolver equações lineares.

2. Como as matrizes são representadas?

Resposta: As matrizes são normalmente representadas usando colchetes ou parênteses. Por exemplo, uma matriz 2x3 pode ser representada como:

[1 2 3]

[4 5 6]

3. Quais são as dimensões de uma matriz?

Resposta: As dimensões de uma matriz são expressas como “m x n”, onde “m” é o número de linhas e “n” é o número de colunas. Por exemplo, uma matriz 3x2 possui 3 linhas e 2 colunas.

4. O que são matrizes quadradas e matrizes retangulares?

Resposta: Matrizes quadradas têm um número igual de linhas e colunas (por exemplo, 2x2 ou 3x3), enquanto matrizes retangulares têm um número diferente de linhas e colunas (por exemplo, 2x3 ou 4x2).

5. Qual é a transposta de uma matriz?

Resposta: A transposta de uma matriz é obtida trocando suas linhas por colunas. Se A é uma matriz, então a transposta de A, denotada como A^T, tem suas linhas tornando-se colunas e vice-versa.

6. Quais são as operações básicas com matrizes?

Resposta: As operações básicas de matrizes incluem adição, subtração, multiplicação escalar e multiplicação de matrizes. Estas operações são definidas com base na compatibilidade de tamanho das matrizes.

7. Como você adiciona ou subtrai matrizes?

Resposta: Para adicionar ou subtrair matrizes, você executa a operação elemento a elemento. As matrizes devem ter as mesmas dimensões para que essas operações sejam válidas.

8. Como é feita a multiplicação de matrizes?

Resposta: A multiplicação de matrizes envolve multiplicar as linhas da primeira matriz pelas colunas da segunda matriz e somar os produtos. O número de colunas na primeira matriz deve corresponder ao número de linhas na segunda matriz para que a multiplicação seja possível.

9. Qual é a matriz identidade?

Resposta: A matriz identidade, muitas vezes denotada como "I" ou "I_n", é uma matriz quadrada com 1s na diagonal principal (do canto superior esquerdo ao canto inferior direito) e 0s em outros lugares. Ele se comporta como o número 1 na aritmética regular.

10. Como as matrizes podem ser usadas para resolver sistemas de equações lineares?

Resposta: Matrizes podem ser usadas para representar sistemas de equações lineares em forma aumentada (Ax = b), onde A é a matriz de coeficientes, x é o vetor de variáveis ​​e b é o vetor constante. Resolver o sistema envolve operações como redução de linhas e encontrar o inverso da matriz de coeficientes.

Mostrar mais

Novidades em 1.0.3 mais recente

Last updated on Dec 28, 2024
Minor bug fixes and improvements. Install or update to the newest version to check it out!
Mostrar mais

Vídeos e capturas de tela

  • Matrix Calculator Cartaz
  • Matrix Calculator imagem de tela 1
  • Matrix Calculator imagem de tela 2
  • Matrix Calculator imagem de tela 3
  • Matrix Calculator imagem de tela 4

Informações sobre Matrix Calculator APK

Última Versão
1.0.3
Categoria
Educação
Android OS
Android 5.0+
Tamanho do arquivo
22.2 MB
Desenvolvedor
Codify Apps
Disponível em
Downloads seguros e rápidos de APK no APKPure
O APKPure usa verificação de assinatura para garantir downloads de APK Matrix Calculator sem vírus para você.

Versões Antigas de Matrix Calculator

APKPure ícone

Baixar de Forma Rápida e Segura via APKPure App

Um clique para instalar arquivos XAPK/APK no Android!

Baixar APKPure
thank icon
We use cookies and other technologies on this website to enhance your user experience.
By clicking any link on this page you are giving your consent to our Privacy Policy and Cookies Policy.
Learn More about Policies